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Abstract. The prospects of measuring triple gauge couplings in W pair production at future linear colliders
with transverse beam polarisation are studied. We consider CP conserving and CP violating couplings
with both real and imaginary parts. The maximum achievable sensitivity in a simultaneous measurement of
all couplings is determined using optimal observables, extending an earlier analysis for longitudinal beam
polarisation. We find good sensitivity to the coupling Im(gR

1 +κR), which is not measurable with longitudinal
polarisation. In contrast, for the real parts (including the CP violating couplings) the sensitivity is better
if both beams are longitudinally polarised. We conclude that a comprehensive measurement of all triple
gauge couplings requires both transverse and longitudinal beam polarisation.

1 Introduction

Future linear e+e− colliders like TESLA [1] or CLIC [2] of-
fer remarkable opportunities to probe the Standard Model
(SM) and its numerous proposed extensions. The wide c.m.
energy range from 90 GeV to 800 GeV or possibly 1 TeV
at TESLA and from 500 GeV to 5 TeV at CLIC, the high
integrated luminosities in the inverse attobarn region, the
clean environment of e+e− collisions, and the possibility
to use polarised beams allow for a variety of precision mea-
surements of the electroweak interactions. Here we consider
the triple gauge couplings (TGCs) γWW and ZWW .

The TGCs are interesting observables for several rea-
sons: Firstly, the most general γWW and ZWW ver-
tices contain altogether 14 complex parameters [3], six of
them CP violating. In the SM the TGCs are predicted
by the non-Abelian gauge symmetry, and only four CP
conserving real couplings are non-zero at tree level. A va-
riety of new physics effects can manifest itself by devia-
tions from the SM predictions [4]. Secondly, in reactions
where longitudinalW boson states are produced via TGCs
the measurement of these couplings may provide informa-
tion about the mechanism of electroweak symmetry break-
ing [5]. Thirdly, though no deviation from the SM has been
found for the TGCs from LEP data [6], the bounds ob-
tained are comparatively weak. The tightest bounds on
the anomalous couplings, i.e. on the differences between a
coupling and its SM value, are of order 0.05 for ∆gZ

1 and
λγ , of order 0.1 for ∆κγ and of order 0.1 to 0.6 for the real
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and imaginary parts of C and/or P violating couplings.1
Moreover, many couplings, e.g. the imaginary parts of C
and P conserving couplings, have been excluded from the
analyses so far.

For various measurements at future colliders, longitu-
dinal polarisation of one or both beams is expected to
significantly improve the sensitivity; see e.g. [7]. A dedi-
cated study of e−e+ → W−W+ has been performed in [8].
Longitudinal beam polarisation indeed enhances the sensi-
tivity to most TGCs. The linear combination of couplings
Im(gR

1 + κR) can however not be measured from the nor-
malised event distribution, unless the beam polarisation
is transverse. Further information on this coupling is con-
tained in the total event rate as discussed in [8], but the
corresponding constraints depend on the values of all other
couplings. Moreover, the total event rate is likely domi-
nated by systematic errors, which we do not attempt to
quantify here.

At present the physics case for transverse beam polar-
isation at a linear collider is being discussed [9, 10]. Once
the planned degree of longitudinal polarisation is realised
in experiment, viz. about P−

l = ±80% for the electron and
about P+

l = ±60% for the positron beam, the same degrees
of transverse polarisation P±

t are considered to be feasible.
Then the important question arises of how to distribute
the available total luminosity among the different modes.
Thus, the physics cases for the various polarisation modes
must be studied.

The purpose of this paper is to analyse the gain or
loss in sensitivity to all 28 TGCs using transverse in-

1 These numbers correspond to fits where all anomalous cou-
plings except one are set to zero
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stead of longitudinal beam polarisation in the reaction
e−e+ → W−W+ → 4 fermions . To this end we consider
the full normalised event distribution. Our work is comple-
mentary to [11], where the total cross section for different
W boson helicities as well as the left-right and transverse
asymmetries – both integrated and as a function of the
W production angle – were calculated for the same reac-
tion, including order α corrections and bremsstrahlung.
The sensitivity of the cross section and of various angu-
lar distributions in the final state was investigated in an
early study of polarisation for LEP2 [12]. Only a restricted
number of CP conserving form factors without imaginary
parts was considered in these works. Here, in contrast, we
determine the maximum sensitivity to the full set of pa-
rameters by means of optimal observables. The differential
cross section for arbitrary polarisation can be written as a
sum where the first term depends on P±

l and the second
is proportional to the product (P−

t · P+
t ); see (16) in [8].

Hence, there can be only effects of transverse polarisation
if both beams are polarised and if both the electron and
the positron spin vectors have a transverse component. In
the following we consider only longitudinal or transverse
polarisation, but no hybrid, though it is in general not
excluded that the sensitivity of the differential cross sec-
tion to some parameters can improve by considering more
generic directions of the electron and positron spin vec-
tors. Furthermore, we quantify the statement in [8] that
the coupling Im(gR

1 + κR) is measurable with transverse
polarisation.

The outline of this work is as follows: In Sect. 2 we
summarise the results for the differential cross section with
arbitrary beam polarisation using the notation of [8]. We
repeat the definitions of the tensors, frames and angles
in detail here, because they are crucial in the context of
transverse polarisation. In Sect. 3 we recall the classifi-
cation of the TGCs into four symmetry classes. We then
show that this can be exploited to measure couplings of
different symmetry classes independently with any type of
beam polarisation (as it can be with longitudinal polarisa-
tion, see [8]). In Sect. 4 we make some general statements
about the measurement of TGCs in W pair production
with transverse beam polarisation. In Sect. 5 we present
our numerical results. We give the minimum achievable
errors on all 28 TGCs when they are measured simultane-
ously, i.e. none of them is assumed to be zero. These results
are then compared to the propects of measurement with
unpolarised beams and with longitudinal polarisation. In
Sect. 6 we present our conclusions.

2 W pair production

In this section we introduce our notation and briefly review
the results of [8] for the differential cross section of the
process

e−e+ −→ W−W+ −→
(
f1f2

) (
f3f4

)
, (1)

where the final state fermions are leptons or quarks. All
definitions and results of this section can be found in [8] and
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Fig. 1. Momenta and helicities in the e−e+ c.m. frame

are repeated here only for the convenience of the reader.
As in [8] the process is calculated in the SM with the γWW
and ZWW vertices replaced by their most general form
allowed by Lorentz invariance. In particular, we use the
fermion–boson vertices of the SM. We parameterise the
γWW and ZWW vertices by the parameters gV

1 , κV , λV ,
gV
4 , gV

5 , κ̃V , λ̃V with V = γ or Z ; see (2.4) in [3]. In the
SM at tree level one has

gV
1 = 1, κV = 1 (V = γ, Z), (2)

and all other couplings are equal to zero. As usual we
denote deviations from the SM values (2) by ∆gV

1 = gV
1 −1

and ∆κV = κV − 1 . It has been emphasised [14] that
the following linear combinations of couplings, introduced
in [3], can be measured with much smaller correlations:

gL
1 = 4 sin2 θW gγ

1 +
(
2 − 4 sin2θW

)
ξ gZ

1 ,

gR
1 = 4 sin2 θW gγ

1 − 4 sin2θW ξ gZ
1 , (3)

where ξ = s/(s − m2
Z), and similarly for the other cou-

plings. The L- and R-couplings respectively appear in the
amplitudes for left- and right-handed initial e−. We use
the parameterisation (3) where appropriate.

Figure 1 shows our definitions of the particle momenta
and helicities. The production of theW bosons is described
in the e−e+ c.m. frame. The coordinate axes are cho-
sen such that the e− momentum points in the positive
z-direction and êy = (k × q)/|k × q| is the y unit vector.
At a given c.m. energy

√
s, a pure initial state of e− and

e+ with longitudinal polarisation can be uniquely specified
by the e− and e+ helicities in the c.m. frame:

|ττ〉 =
∣∣e−(k, τ)e+(k, τ)

〉
(τ, τ = ±1) . (4)

Here and in the following fermion helicity indices are nor-
malised to 1. A mixed initial state with general polarisation
is given by the operator

ρ =
∑
(τ)

|ττ〉 ρ(ττ)(τ ′τ ′)〈τ ′τ ′|, (5)

where ρ(ττ)(τ ′τ ′) is the spin density matrix of the combined
e−e+ system and (τ) denotes summation over τ , τ , τ ′ and
τ ′. The matrix entries satisfy

ρ∗
(ττ)(τ ′τ ′) = ρ(τ ′τ ′)(ττ),

∑
τ,τ

ρ(ττ)(ττ) = 1. (6)
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The differential cross section with the initial state ρ is
given by the trace

dσ|ρ = tr (dσρ) =
∑
(τ)

dσ(τ ′τ ′)(ττ) ρ(ττ)(τ ′τ ′), (7)

where dσ is the operator

dσ =
∑
(τ)

|τ ′τ ′〉 dσ(τ ′τ ′)(ττ)〈ττ |. (8)

Using the narrow-width approximation for the W s, the
matrix entries in (8) are

dσ(τ ′τ ′)(ττ) =
β

(8π)6(mWΓW )2 s

×
∑
(λ)

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ) dDλ′λ dDλ′λ . (9)

Here mW is the W boson mass, ΓW its width, and β =
(1 − 4m2

W /s)1/2 its velocity in the e−e+ c.m. frame. The
sum (λ) runs over λ, λ′, λ and λ′. Denoting the transition
operator by T the differential production tensor for the
W pair is

dP(λλ)(λ′λ′)
(τ ′τ ′)(ττ) (10)

= d(cosΘ) dΦ 〈λλ,Θ|T |ττ〉 〈λ′λ′, Θ|T |τ ′τ ′〉∗
,

and the tensors of the W− and W+ decays in their respec-
tive c.m. frames are

dDλ′λ = d(cosϑ) dϕ 〈f1f2|T |λ〉 〈f1f2|T |λ′〉∗,

dDλ′λ = d(cosϑ) dϕ 〈f3f4|T
∣∣λ〉

〈f3f4|T
∣∣λ′〉∗

. (11)

The matrix elements in (10) and (11) are given in [3]. The
W bosons are produced by SM neutrino exchange in the
t-channel, and by s-channel photon and Z production via
the TGCs of the SM and the anomalous TGCs. We note
that in our process there are possible effects of physics
beyond the SM which cannot be parameterised in terms
of TGCs; see e.g. [15]. For further discussion of this point
we refer to [8].

The W helicity states occurring on the right-hand side
of (10) are defined in the frame of Fig. 1. By Θ we de-
note the polar angle between the W− and e− momenta.
Furthermore, we choose a fixed direction transverse to the
beams in the laboratory. By Φ we denote the azimuthal an-
gle between this fixed direction and the e−e+ → W−W+

scattering plane (see Fig. 2a). The respective frames for the
decay tensors (11) are defined by a rotation byΘ about the
y-axis of the frame in Fig. 1 (such that theW− momentum
points in the new positive z-direction) and a subsequent
rotation-free boost into the c.m. system of the correspond-
ing W . The spherical coordinates in (11) are those of the
f1 and f4 momentum directions, respectively. In its rest
frame, the quantum state of a W boson is determined by
its polarisation. In the narrow-width approximation the
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Fig. 2a,b. Definition of azimuthal angles. The x-axis points
in the direction of q⊥

intermediate W s are treated as on-shell, so that we can
take as basis the eigenstates of the spin operator Sz with
the three eigenvalues λ = ±1, 0 .

Subsequently, we set the electron mass to zero. Since
we assume SM couplings for the electron–boson vertices
we have the relations

dσ(τ ′τ ′)(ττ) = 0 for τ = τ or τ ′ = τ ′. (12)

Assuming the initial beams to be uncorrelated their spin
density matrix factorises:

ρ(ττ)(τ ′τ ′) = ρττ ′ρ τ τ ′ , (13)

where ρττ ′ and ρ τ τ ′ are the two Hermitian and normalised
spin density matrices of e− and e+, respectively. As in [8]
we parameterise these matrices by

ρττ ′ =
1
2

(
� + �p− · �σ

)
ττ ′ ,

ρ τ τ ′ =
1
2

(
� − �p+ · �σ ∗)

τ τ ′ , (14)

with

�p± = P±
t


cosϕ±

sinϕ±

0


 + P±

l


 0

0
∓1


 . (15)

The range of the azimuthal angles is 0 ≤ ϕ± < 2π. The
components of �σ are the Pauli matrices. The degrees P±

t of
transverse and P±

l of longitudinal polarisation obey the re-
lations (P±

t )2 + (P±
l )2 ≤ 1 and P±

t ≥ 0. The components
of �p± in (15) refer to the frame of Fig. 1 . The relative az-
imuthal angle ψ = ϕ−−ϕ+ between �p− and �p+ is fixed by
the experimental conditions, whereas the azimuthal angles
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ϕ− of �p− and ϕ+ of �p+ in the system of Fig. 1 depend on
the final state (see Fig. 2b). For the case where P−

t �= 0
we choose the transverse part of the vector �p− as fixed di-
rection in the laboratory. Then we have Φ = −ϕ− . With
these conventions the differential cross section for arbitrary
beam polarisation is

dσ|ρ =
1
4

{ (
1 + P−

l

) (
1 − P+

l

)
dσ(+−)(+−) (16)

+
(
1 − P−

l

) (
1 + P+

l

)
dσ(−+)(−+)

−2P−
t P

+
t

[
Re dσ(+−)(−+) cos (ψ + 2Φ)

+ Im dσ(+−)(−+) sin (ψ + 2Φ)
]}
.

In this formula the azimuthal angle Φ occurs only in the
arguments of the two trigonometric functions.

3 CP and CPT̃

As is well-known [3] the real and the imaginary parts of
the couplings g1, κ, λ, and g5 are CP conserving, whereas
those of g4, κ̃, and λ̃ are CP violating. Here CP denotes
the combined discrete symmetry of charge conjugation and
parity transformation. Furthermore, the real parts of the
couplings are CPT̃ conserving, whereas their imaginary
parts are CPT̃ violating, where T̃ denotes “näıve time
reversal”, i.e. the reversal of all particle momenta and spins
without the interchange of initial and final state. Hence the
TGCs can be classified as follows [14,16]:

(a) CP and CPT̃ conserving,
(b) CP conserving and CPT̃ violating,
(c) CP violating and CPT̃ conserving,
(d) CP and CPT̃ violating.

Since the interactions are invariant under rotations we
can, instead of a pure CPT̃ transformation, equally well
consider RCPT̃ , i.e. CPT̃ followed by a rotation R by
180 degrees around êy. Notice that this differs from the
definition of R in Sect. 3.3 of [8] where the rotation axis
is k× �p− . More details are given in Appendices A and B.

When measured with an appropriate set of observ-
ables [14], couplings from different symmetry groups have
uncorrelated statistical errors (to leading order in the
anomalous couplings), provided that phase space cuts, de-
tector acceptance and the initial state are invariant under
CP and RCPT̃ . As mentioned in [8], CP and RCPT̃
violating effects from the initial state in e−e+ → W−W+

are suppressed by (me/mW ) with transverse beam polar-
isation and by (me/mW )2 with longitudinal polarisation
or unpolarised beams. Consequently, these effects vanish
in the limit me → 0 for an arbitrary spin density matrix ρ.
This means that, although the initial state is not invari-
ant under CP and RCPT̃ , it is effectively invariant for
our reaction in the me → 0 limit. Let us make this more
explicit.

Both the CP and the RCPT̃ transformation of the ini-
tial state leave the particle momenta unchanged and corre-
spond to the following transformation of the spin density

matrix:

ρ(ττ)(τ ′τ ′) CP, R CPT̃−−−−−−−→ ρ(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ ,

(17)
where

ε =
(

0 1
−1 0

)
. (18)

This transformation rule is derived in Appendix B. Thus
invariance of the spin density matrix under either of the
two symmetries requires

ρ(ττ)(τ ′τ ′) = ρ(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ . (19)

If the spin density matrix factorises as in (13) we find

ρττ ′ =
(
εTρ ε

)
ττ ′ . (20)

In our parameterisation the spin density matrices are ex-
plicitly given by

ρττ ′ =
1
2


(1 + P−

l ) P−
t e−iϕ−

P−
t eiϕ−

(1 − P−
l )




ττ ′

, (21)

ρ τ τ ′ =
1
2


 (1 + P+

l ) −P+
t eiϕ+

−P+
t e−iϕ+

(1 − P+
l )




τ τ ′

. (22)

The requirement (20) thus reads

ρττ ′ =
1
2


(1 − P+

l ) P+
t e−iϕ+

P+
t eiϕ+

(1 + P+
l )




ττ ′

, (23)

which leads to the following conditions on the polarisation
parameters:

P−
l = −P+

l , P−
t = P+

t , ϕ− = ϕ+. (24)

If we do not demand CP or RCPT̃ invariance of the full
spin density matrix but only consider those matrix entries
that give non-vanishing amplitudes we find, instead of (19):

ρ̃(ττ)(τ ′τ ′) = ρ̃(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ , (25)

with a “reduced” spin density matrix

ρ̃(ττ)(τ ′τ ′) =



ρ(ττ)(τ ′τ ′) for τ = −τ and τ ′ = −τ ′,

0 else.
(26)

Inserting this definition into (25) we find that the condition
for CP orRCPT̃ invariance is trivially fulfilled. Under the
assumption that only amplitudes with τ = −τ contribute
to the differential cross section and that the factorisation
(13) is possible, no condition has therefore to be imposed
on P±

l , P±
t or ϕ± to guarantee absence of CP or RCPT̃

violation in the initial state. Any violation of CP or CPT̃
is then due to the interaction.
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4 Sensitivity to couplings

To investigate the prospects of measuring anomalous TGCs
in the process (1) with transverse beam polarisation we use
optimal observables [17,14]. In the limit of small couplings,
the statistical errors on the couplings determined with this
method are minimal compared with any other set of ob-
servables. To be more precise, these observables minimise
the errors for a given normalised event distribution. The
integrated cross section still contains complementary in-
formation on the couplings. For more details concerning
optimal observables we refer to Sect. 3 in [8] where they
are applied to the same reaction with longitudinal beam
polarisation. Before listing our results in Sect. 5 we now
discuss some aspects of transverse polarisation in the con-
text of the process (1).

Looking at the differential cross section (16) we see that
a change in ψ by ∆ψ is equivalent to a rotation of the whole
event distribution about the beam axis by ∆Φ = ∆ψ/2 . It
neither changes the shape of the distribution nor the total
event rate. The sensitivity to the TGCs thus does not de-
pend on ψ. Integrating the differential cross section over Φ,
the terms proportional to cos (ψ + 2Φ) and sin (ψ + 2Φ) in
(16) vanish. The total cross section is hence independent
of P−

t , P+
t and ψ. Therefore, in absence of longitudinal

polarisation, the total cross section with transversely po-
larised beams equals that with unpolarised beams. This
cross section is shown in Fig. 4 of [8] for the SM and with
various anomalous TGCs. Some other quantities required
for the optimal observable method are also the same for
pure transverse polarisation and for unpolarised beams.
These are in particular the total cross section in the SM
σ0, the expectation values of the optimal observables in
the SM E0[Oi], and the normalised second-order part of
the total cross section σ̂2ij ; see (26) and (36) in [8].

As seen in Sect. 3, the initial state is not invariant under
the discrete symmetries CP and RCPT̃ for generic beam
polarisation. It is however effectively invariant if the elec-
tron mass is neglected, because then only a subset of helic-
ity amplitudes is non-zero. Hence the results of Sect. 3.3
in [8] apply, i.e. a given optimal observable is sensitive
only to couplings of the same symmetry class (a), (b), (c),
or (d). Measurement errors on couplings of different sym-
metry classes are not correlated to leading order in the
anomalous couplings. Furthermore, the first-order terms
in the integrated cross section vanish except for symmetry
(a), where only the gR

5 -term is zero.

5 Numerical results

In this section we present our results for the sensitivity to
anomalous TGCs in the reaction (1) with transverse beam
polarisations P−

t = 80% of the electron and P+
t = 60% of

the positron beam. As in [8] we consider only events where
one W boson decays into a quark-antiquark pair and the
other one into eν and µν. These decay channels have a
branching ratio of altogether 8/27. We assume that the
two jets of the hadronic W decay cannot be identified
as originating from the up- and down-type (anti)quark.

This must be taken into account in the definition of the
optimal observables as explained in [16]. To measure the
coupling parameters these observables have the maximum
sensitivity that one can obtain from the sum of the event
distributions corresponding to the two final states.

For the masses of theW andZ we usemW = 80.42 GeV
and mZ = 91.19 GeV [13] and define the weak mixing
angle by sin2θW = 1−m2

W /m2
Z . For the total event rate N

with transverse beam polarisation we use the values listed
in Table 3 of [8], viz. 1.14×106 for a c.m. energy of 500 GeV
and 1.19 × 106 for 800 GeV. These values are computed
for an effective electromagnetic coupling α = 1/128 and
integrated luminosities of 500 fb−1 at 500 GeV and 1 ab−1

at 800 GeV.
In Tables 1 to 4 we give the standard deviations for the

couplings of symmetry classes (a) to (d), δhi = [V (h)ii]1/2,
as well as the correlation matrices

W (h)ij =
V (h)ij√

V (h)iiV (h)jj

, (27)

where V (h)ij is the covariance matrix of the couplings
in the L–R-parameterisation (3). V and W are evaluated
with zero anomalous couplings, and errors on couplings in
different symmetry classes are uncorrelated to this accu-
racy. The δhi are the errors obtained without assuming any
other anomalous coupling to be zero. For symmetry (b) we
use the linear combinations h̃± = Im(gR

1 ± κR)/
√

2 instead
of Im gR

1 and ImκR to allow for better comparison with
the results for unpolarised beams and longitudinal polari-
sation, where the normalised event distribution is sensitive
to h̃−, but not to h̃+. The range of the δhi within each sym-
metry class is from about 5×10−4 to about 5×10−3 . Notice
that both h̃+ and h̃− are measurable with an error of about
3.5×10−3 using transverse polarisation. This confirms and
makes quantitive the result of [8] that one is indeed sensi-
tive to h̃+ with transverse polarisation. Also the sensitivity
to h̃− is significantly better than with unpolarised beams,
where the error is about 10−2. The high correlation be-
tween h̃+ and h̃− however suggests that the parameterisa-
tion with Im gR

1 and ImκR is preferable in an analysis of the
data from transverse polarisation (whereas it is inadequate
with longitudinal polarisation or unpolarised beams). The
gain by different types of polarisation at 500 GeV can be
seen from Tables 5 to 8 for the four symmetry classes.
In Tables 9 to 12 the same is shown for 800 GeV. To al-
low for better comparison with other studies we use the
photon- and Z-couplings for the results of symmetries (a),
(c) and (d) instead of the L- and R-couplings, although the
latter are in general less correlated. We use however the
L–R-couplings for symmetry (b), where only one coupling
is unmeasurable without transverse beam polarisation. In
the γ–Z-parameterisation, four couplings, Im gγ

1 , Im gZ
1 ,

Imκγ and ImκZ , are not measurable in the absence of
transverse polarisation, because their linear combination
h̃+ is not. In the unpolarised case the assumed luminosity
is 500 fb−1 at 500 GeV and 1 ab−1 at 800 GeV. The same
values are used for the results with transverse polarisa-
tion in the fourth row of each table. For the results with
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Table 1. Errors δh in units of 10−3 on the couplings of symmetry (a) (see Sect. 3) in the presence
of all anomalous couplings, and correlation matrix W (h) at

√
s = 500 GeV with transverse beam

polarisation (P −
t , P+

t ) = (80%, 60%)

h δh × 103 Re ∆gL
1 Re ∆κL Re λL Re gL

5 Re ∆gR
1 Re ∆κR Re λR Re gR

5

Re ∆gL
1 2.5 1 −0.58 −0.36 0.17 −0.068 0.18 −0.011 0.11

Re ∆κL 0.72 1 0.077 0.013 0.075 −0.46 0.023 −0.014
Re λL 0.58 1 −0.011 0.053 −0.0040 0.029 0.045
Re gL

5 2.0 1 −0.14 −0.0027 −0.038 0.085
Re ∆gR

1 4.2 1 −0.56 −0.41 0.35
Re ∆κR 1.2 1 0.075 −0.086
Re λR 0.99 1 −0.066
Re gR

5 3.5 1

Table 2. Same as Table 1, but for symmetry (b). We use the abbreviations h̃± = Im(gR
1 ±

κR)/
√

2

h δh × 103 Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

Im gL
1 2.6 1 −0.63 −0.49 −0.20 0.050 −0.037 0.061 0.028

Im κL 1.2 1 0.19 0.14 −0.072 0.051 −0.029 0.22
Im λL 0.46 1 0.015 0.024 0.048 −0.063 −0.089
Im gL

5 2.0 1 −0.063 −0.053 0.10 0.18
h̃− 3.7 1 0.81 −0.39 0.16
h̃+ 3.2 1 −0.39 0.11
Im λR 0.98 1 −0.0041
Im gR

5 4.4 1

Table 3. Same as Table 1, but for symmetry (c)

h δh × 103 Re gL
4 Re λ̃L Re κ̃L Re gR

4 Re λ̃R Re κ̃R

Re gL
4 2.4 1 −0.0082 −0.50 −0.072 −0.079 0.084

Re λ̃L 0.58 1 0.30 0.022 0.030 −0.074
Re κ̃L 2.6 1 0.090 0.056 0.063
Re gR

4 3.9 1 −0.013 −0.11
Re λ̃R 0.99 1 0.41
Re κ̃R 4.1 1

Table 4. Same as Table 1, but for symmetry (d)

h δh × 103 Im gL
4 Im λ̃L Im κ̃L Im gR

4 Im λ̃R Im κ̃R

Im gL
4 1.8 1 0.0044 0.19 0.11 0.086 −0.0072

Im λ̃L 0.45 1 0.51 −0.10 −0.056 −0.022
Im κ̃L 1.9 1 −0.18 −0.047 0.0037
Im gR

4 3.6 1 −0.021 −0.32
Im λ̃R 0.97 1 0.43
Im κ̃R 3.7 1

Table 5. Errors δh in units of 10−3 on the couplings of symmetry (a) in the presence of all anomalous
couplings at

√
s = 500 GeV , with unpolarised beams and with different beam polarisations

Re ∆gγ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re gγ
5 Re gZ

5

No polarisation 6.5 5.2 1.3 1.4 2.3 1.8 4.4 3.3
(P −

l , P+
l ) = (∓80%, 0) 3.2 2.6 0.61 0.58 1.1 0.86 2.2 1.7

(P −
l , P+

l ) = (∓80%, ±60%) 1.9 1.6 0.40 0.36 0.62 0.50 1.4 1.1
(P −

t , P+
t ) = (80%, 60%) 2.8 2.4 0.69 0.82 0.69 0.55 2.5 1.9
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Table 6. Same as Table 5, but for symmetry (b) and with the L–R-parameterisation. We write
again h̃± = Im(gR

1 ± κR)/
√

2. Using this parameterisation, a maximum number of couplings
can be measured without transverse beam polarisation. In the γ–Z-parameterisation, the four
couplings Im gγ

1 , Im gZ
1 , Im κγ and Im κZ are not measurable without transverse polarisation

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

No polarisation 2.7 1.7 0.48 2.5 11 – 3.1 17
(P −

l , P+
l ) = (∓80%, 0) 2.6 1.2 0.45 2.0 4.5 – 1.4 4.3

(P −
l , P+

l ) = (∓80%, ±60%) 2.1 0.95 0.37 1.6 2.5 – 0.75 2.3
(P −

t , P+
t ) = (80%, 60%) 2.6 1.2 0.46 2.0 3.7 3.2 0.98 4.4

Table 7. Same as Table 5, but for symmetry (c)

Re gγ
4 Re gZ

4 Re λ̃γ Re λ̃Z Re κ̃γ Re κ̃Z

No polarisation 6.2 5.1 2.4 1.9 7.3 5.4
(P −

l , P+
l ) = (∓80%, 0) 3.0 2.5 1.1 0.90 3.4 2.7

(P −
l , P+

l ) = (∓80%, ±60%) 1.8 1.5 0.64 0.52 2.1 1.7
(P −

t , P+
t ) = (80%, 60%) 2.7 2.3 0.69 0.55 2.9 2.3

Table 8. Same as Table 5, but for symmetry (d)

Im gγ
4 Im gZ

4 Im λ̃γ Im λ̃Z Im κ̃γ Im κ̃Z

No polarisation 5.1 3.6 1.8 1.4 5.6 4.2
(P −

l , P+
l ) = (∓80%, 0) 2.3 1.8 0.84 0.68 2.7 2.1

(P −
l , P+

l ) = (∓80%, ±60%) 1.4 1.1 0.48 0.39 1.6 1.3
(P −

t , P+
t ) = (80%, 60%) 2.5 1.8 0.63 0.53 2.5 2.0

Table 9. Same as Table 5, but for
√

s = 800 GeV

Re ∆gγ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re gγ
5 Re gZ

5

No polarisation 4.0 3.2 0.47 0.58 1.1 0.90 3.1 2.5
(P −

l , P+
l ) = (∓80%, 0) 1.9 1.6 0.21 0.21 0.53 0.43 1.6 1.3

(P −
l , P+

l ) = (∓80%, ±60%) 1.1 0.97 0.14 0.13 0.29 0.24 0.97 0.82
(P −

t , P+
t ) = (80%, 60%) 1.8 1.5 0.27 0.35 0.28 0.23 1.7 1.3

Table 10. Same as Table 6, but for
√

s = 800 GeV

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

No polarisation 1.5 0.74 0.18 1.5 6.0 – 1.2 9.0
(P −

l , P+
l ) = (∓80%, 0) 1.5 0.60 0.17 1.3 2.4 – 0.54 2.7

(P −
l , P+

l ) = (∓80%, ±60%) 1.2 0.48 0.14 1.0 1.3 – 0.29 1.4
(P −

t , P+
t ) = (80%, 60%) 1.5 0.60 0.17 1.3 2.1 2.0 0.39 2.8

Table 11. Same as Table 5, but for
√

s = 800 GeV and symmetry (c)

Re gγ
4 Re gZ

4 Re λ̃γ Re λ̃Z Re κ̃γ Re κ̃Z

No polarisation 4.1 3.4 1.1 0.92 4.5 3.3
(P −

l , P+
l ) = (∓80%, 0) 2.0 1.7 0.54 0.44 2.1 1.6

(P −
l , P+

l ) = (∓80%, ±60%) 1.2 1.0 0.30 0.24 1.2 1.0
(P −

t , P+
t ) = (80%, 60%) 1.8 1.6 0.28 0.23 1.9 1.5

Table 12. Same as Table 5, but for
√

s = 800 GeV and symmetry (d)

Im gγ
4 Im gZ

4 Im λ̃γ Im λ̃Z Im κ̃γ Im κ̃Z

No polarisation 3.8 2.8 0.72 0.60 4.0 2.9
(P −

l , P+
l ) = (∓80%, 0) 1.6 1.3 0.34 0.28 1.8 1.4

(P −
l , P+

l ) = (∓80%, ±60%) 0.93 0.79 0.19 0.16 1.1 0.86
(P −

t , P+
t ) = (80%, 60%) 1.7 1.3 0.25 0.21 1.7 1.4
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longitudinal e− polarisation in the second row we assume
that one half of the luminosity is used for P−

l = +80% and
the other half for P−

l = −80%. Similarly, for the results in
the third row with additional longitudinal e+ polarisation
we assume that the total luminosity is equally distributed
among the settings with (P−

l , P
+
l ) = (+80%,−60%) and

(−80%,+60%). For each of rows number two and three,
the results from the two settings are combined in the con-
ventional way, i.e. we take the two covariance matrices V1
and V2, and compute the matrix

V =
(
V −1

1 + V −1
2

)−1
. (28)

This is the covariance matrix on the couplings if they are
determined by a weighted average from two individual
measurements. V1, V2 and V are 8×8 matrices for sym-
metry class (a) and 6×6 matrices for symmetry classes (c)
and (d), whereas in the case of symmetry class (b) they
are 7×7 matrices since the coupling h̃+ is excluded. The
square roots of the diagonal elements of V are then the
1σ-errors, which we list in the second and third rows of
Tables 5 to 12.

For a c.m. energy of 500 GeV the errors with unpo-
larised beams are between 10−3 and 10−2 in the γ–Z-
parameterisation (see Tables 5, 7, and 8). All errors (with
or without polarisation) are smaller at 800 GeV (see Ta-
bles 9 to 12), notably for Re∆κγ and ImλR. For both
c.m. energies the errors on all couplings in the γ–Z-param-
eterisation are about a factor 2 smaller with longitudinal
e− polarisation and unpolarised e+ beam compared to the
case where both beams are unpolarised. With additional
longitudinal e+ polarisation this factor is between 3 and 4
for all couplings, except for Re∆κZ at 800 GeV where it is
4.7. If both beams have transverse polarisation, the errors
on most couplings are approximately of the same size as in
the situation where only the e− beam has longitudinal po-
larisation. Only for Reλγ , ReλZ , Re λ̃γ and Re λ̃Z are they
smaller, viz. they are of the same size as with both beams
longitudinally polarised. This is true for both energies. If
electron as well as positron polarisation is available we
thus conclude that, regarding the 1σ-standard deviations
on the TGCs (without assuming any coupling to be zero)
longitudinal polarisation is the preferable choice, except
for h̃+. We emphasise that we are better off with longi-
tudinal polarisation also for the CP violating couplings
Re gV

4 , Re λ̃V and Re κ̃V with V = γ or Z .
Furthermore, we analyse how correlations between cou-

plings depend on beam polarisation. Given the large num-
ber of parameters, small correlations are highly desirable.
For brevity we do not present the full correlation matrices
here for all different types of polarisation but only give
the average over the absolute values of the off-diagonal el-
ements in the correlation matrices (see Table 13). Further-
more, we restrict ourselves to symmetry (a) and a c.m. en-
ergy of 500 GeV.

Apart from the average over all 28 matrix entries we
list the averages over the correlations between L-couplings,
between R-couplings and those between one L- and one
R-coupling. We see that no type of polarisation changes

Table 13. Averages over the absolute values of the off-diagonal
elements in the correlation matrices (27) in %, for symmetry (a)
with

√
s = 500 GeV and different beam polarisations. Apart

from the average over all 28 couplings (last column) we list
the averages over the correlations between L-couplings (LL),
between R-couplings (RR) and those between one L- and one
R-coupling (LR)

LL RR LR all
No polarisation 22 42 14 22
(P −

l , P+
l ) = (∓80%, 0) 22 41 4 16

(P −
l , P+

l ) = (∓80%, ±60%) 22 37 2 13
(P −

t , P+
t ) = (80%, 60%) 20 26 8 15

the average correlation between two L-couplings signifi-
cantly. The average correlation between the R-couplings
is most advantageous for transverse polarisation (26%),
whereas in the other cases it ranges from 37% to 42%. On
the other hand the L-couplings are hardly correlated with
the R-couplings for longitudinal polarisation of e− and
e+ (2%). This deteriorates with transverse polarisation,
but the correlations remain very small (8%). Altogether,
regarding the size of the correlations there is no strong
argument to prefer one type of polarisation or the other.

Finally, we remark that the sensitivity to TGCs in our
reaction has been analysed in [18] for unpolarised beams
and for longitudinal polarisation. A maximum number of
five CP conserving and four CP violating couplings was
considered, but no imaginary parts were included (see Ta-
bles 5 and 6 of [18]). The author used a spin density matrix
method where statistical errors are not necessarily optimal.
A direct comparison with our results is however not possi-
ble. On the one hand the multi-parameter analysis of [18]
includes beamstrahlung, initial state radiation and non-
resonant diagrams. For the single parameter fits the full
background calculated with PYTHIA and also detector ac-
ceptance is included. On the other hand only a restricted
number of couplings is considered. An analysis using opti-
mal observables with a full detector simulation and all 28
couplings would be desirable for unpolarised beams and
both types of polarisation. This is however beyond the
scope of our present work.

6 Conclusions

We have studied the prospects of measuring TGCs at a
future linear collider in W pair production with transverse
beam polarisation. Effects due to transverse polarisation
can only occur if both beams are polarised and if both
spins have a transverse component. The classification of
the TGCs into four groups according to their properties un-
der the discrete symmetries CP and CPT̃ remains valid in
the case of transverse polarisation, neglecting effects which
are at most O(me/mW ) . Using optimal observables these
four groups of parameters can be measured without statis-
tical correlation. Within each group, the errors on TGCs
are correlated. We have given the errors and correlation
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matrices for a c.m. energy of 500 GeV with transverse po-
larisation of the electron (P−

t = 80%) and the positron
beam (P+

t = 60%) in the parameterisation with L- and R-
couplings. The errors range from about 5 × 10−4 to about
5×10−3 . Moreover, we have compared the errors – mainly
in the γ–Z-parameterisation – for transverse polarisation
with those for unpolarised beams and with those for one or
both beams longitudinally polarised. For most couplings
the errors obtainable with transverse polarisation are of the
same order as with longitudinal e− polarisation and unpo-
larised e+ beam. If one has both beams polarised and can
choose between longitudinal or transverse polarisation it
is therefore advantageous to use longitudinal polarisation,
except for the measurement of h̃+. For the real parts of the
couplings, the only advantage of transverse polarisation we
found is that the average correlation among R-couplings is
slightly reduced. The coupling h̃+, however, is unmeasur-
able from the normalised event distribution with longitu-
dinal polarisation, but it can be measured with an error of
3.2 × 10−3 using transverse polarisation. This suggests to
use some fraction of the total luminosity to run the collider
in this mode in order to get a comprehensive measurement
of all TGCs. The required luminosity for a certain desired
value of the statistical error on Im(gR

1 + κR)/
√

2 can be
easily calculated by applying the corresponding statistical
factor.
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A Phase conventions of the helicity states

To make the discrete symmetry properties of the initial
state (cf. Sect. 3) more apparent, we present in detail our
phase conventions of the helicity states in this appendix.
The resulting criteria for CP and RCPT̃ invariance of the
spin density matrix are shown in Appendix B. Our starting
point is a Wigner basis of electron and positron states (see
Chap. 16 of [19]) defined in the e−e+ c.m. system:

∣∣e−(�p, σ)
〉
W ,

∣∣e+(�p, σ)
〉
W (σ = ±1). (29)

Here �p is an arbitrary three-momentum in the e−e+ c.m.,
given in the coordinate system fixed by the e−e+→W−W+

scattering plane (cf. Fig. 1), and σ/2 is the spin component
along the positive z-axis (we follow the notation of [8] and
normalise all spin and helicity indices to 1). We set

k± := (0, 0,±|k|), |k| =
1
2

√
s− 4m2

e , (30)

where
√
s is the c.m. energy of e−e+. We define the helicity

states with momentum k+ to be the Wigner states
∣∣e±(k+, τ)

〉
H =

∣∣e±(k+, τ)
〉
W . (31)

We define the helicity states with momentum k− by a
rotation of +π around the y-axis, i.e. we set

R = exp(−iπJy),∣∣e±(k−, τ)
〉
H = U(R)

∣∣e±(k+, τ)
〉
H , (32)

where Jy is the angular momentum along y. The transfor-
mation formulae for the Wigner states (see Appendix J,
16.3 of [19]) give∣∣e±(k−, τ)

〉
H = −

∣∣e±(k−, σ)
〉
W εστ (33)

with

ε =
(

0 1
−1 0

)
. (34)

Here and in the following, summation over repeated indices
is understood. Our sign convention in the exponent of (32)
together with the prescription to rotate around êy by +180
degrees is consistent with the spinors2 (103) and (104)
of [8]. For the spin density matrix ρ of the e−e+ system
in the helicity and Wigner bases we obtain the relation

H

〈
e−(k+, τ)e+(k−, τ)

∣∣∣ ρ
∣∣∣e−(k+, τ

′)e+(k−, τ ′)
〉

H

=
W

〈
e−(k+, τ)e+(k−, σ)

∣∣∣ ρ
∣∣∣e−(k+, τ

′)e+(k−, σ′)
〉

W

× εσ τ εσ′τ ′ , (35)

or, in shorthand notation,

ρH
(ττ)(τ ′τ ′) = ρW

(τσ)(τ ′σ′) εσ τ εσ′τ ′ , (36)

where ρH is the spin density matrix in the helicity basis
and ρW is the one in the Wigner basis. The matrix ρH is
therefore the same as ρ in (5). If the spin density matrix
in the Wigner basis factorises, i.e. if

ρW
(ττ)(τ ′τ ′) = ρW

ττ ′ ρW
τ τ ′ , (37)

it also factorises in the helicity basis, with factors

ρH
ττ ′ = ρW

ττ ′ , ρH
τ τ ′ = ρW

σ σ′ εσ τ εσ′τ ′ . (38)

We parameterise ρW and ρW as usual:

ρW
ττ ′ =

1
2

(
� + �p− · �σ

)
ττ ′ ,

ρW
τ τ ′ =

1
2

(
� + �p+ · �σ

)
τ τ ′ , (39)

where �p± are the vectors defined in (15). This results in
the following form of the spin density matrices in the he-
licity basis:

ρH
ττ ′ =

1
2

(
� + �p− · �σ

)
ττ ′ ,

ρH
τ τ ′ =

1
2

(
� − �p+ · �σ ∗)

τ τ ′ , (40)

as given in (14).
2 Note that, compared with the coordinate system used here,

the spinors in [8] are defined in a system rotated by Θ around
the y-axis
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B CP and R CPT̃ invariance
of the initial state

For a symmetry operation that is defined by a unitary
operator U acting on the space of state vectors, invariance
of ρ under this symmetry is expressed by

ρ = U†ρ U. (41)

We have to reformulate this matrix equation in component
notation in the helicity basis for the symmetries CP and
RCPT̃ . The transformation of the Wigner states under
CP is defined by the unitary operator [19]

U(CP )
∣∣e±(�p, σ)

〉
W = ∓

∣∣e∓(−�p, σ)
〉
W . (42)

Hence, for an e−e+ state in the helicity basis we have

U(CP )
∣∣e−(k+, τ)e+(k−, τ)

〉
H

= −
∣∣e−(k+, σ)e+(k−, σ)

〉
H εσ τ εστ , (43)

where the sign due to the interchange of fermions is taken
into account. Invariance of ρ under CP then corresponds
to

ρH
(ττ)(τ ′τ ′) = ρH

(σσ)(σ′σ′) εσ τ εστ εσ′τ ′ εσ′τ ′ , (44)

which leads to the conditions (24) on the polarisation pa-
rameters.

We define the discrete symmetry T̃ by a unitary oper-
ator that acts on the Wigner states as follows:

U(T̃ )
∣∣e±(�p, σ)

〉
W = −

∣∣e±(−�p, σ′)
〉
W εσ′σ . (45)

For the combined symmetry U(CPT̃ ) = U(CP )U(T̃ ) we
then obtain

U
(
CPT̃

) ∣∣e±(k∓, τ)
〉
H = ±

∣∣e∓(k∓, τ ′)
〉
H ετ ′τ . (46)

Together with a subsequent rotation around the y-axis by
+180 degrees (32) we have

U
(
RCPT̃

) ∣∣e±(k∓, τ)
〉
H = −

∣∣e∓(k±, τ ′)
〉
H ετ ′τ . (47)

The transformation of the combined e−e+ state is then

U
(
RCPT̃

) ∣∣e−(k+, τ)e+(k−, τ)
〉
H

= −
∣∣e−(k+, σ)e+(k−, σ)

〉
H εσ τ εστ , (48)

where again the interchange of two fermions is taken into
account. Invariance of ρ under RCPT̃ then again leads
to (44). So, as for CP , full invariance of ρ requires (24),
whereas invariance of the reduced matrix ρ̃ (26) is trivially
fulfilled.
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